TOKAT MEYVECİLİK ÜRETME İSTASYONU TOPRAKLARININ DETAYLI ETİTÜ, HARİTALANMASI VE SINIFLANDIRILMASI

Alper DURAK
G.O.Ü. Ziraat Fakültesi Toprak Bölümü Doç. Dr.-TOKAT
Hakan YILDIZ
Kars Tarım İl Müdürlüğü Zir. Müh.- KARS

ÖZET
Bu çalışmada, Tokat Meyvecilik Üretme İstasyonu Müdürlüğüne ait olan topraklar önemli fiziksel, kimyasal ve morfolojik özellikleri araştırılarak toprak taksonomisi ve FAO/UNESCO sistemine göre sınıflandırılmışlardır. Çalışma alanında 2 farklı fizyografik ünite üzerinde 6 farklı toprak serisi saptanarak tanımlanmıştır.

Çalışma alanı toprakları Toprak Taksonomisine (1) göre Entisol ordosunun Fluvent ve Orthent altordolarına, FAO/UNESCO (2)'a göre de Regosol ve Fluvisol ordolarına girmektedir.

ABSTRACT

SOIL SURVEY, MAPPING AND CLASSIFICATION OF TOKAT FRUIT PRODUCTION CENTER SOILS

In this study important physical, chemical and morphological propertise of The Center of Tokat Fruit Production soils were determined and classified according to the criteria of the Soil Taxonomy and FAO/UNESCO system. In the study area six soil series was described and mapped on two different physiographic units.

The soils of the research area are classified fluvent and orthent suborder in Entisol order according to Soil Taxonomy (1), and regosol and fluvisol order according to FAO/UNESCO(2).

*Yüksek Lisans Tezi (G.O.P. Üniversitesi Araştırma Fonunca Desteklenmiştir.)
1. GİRİŞ

Yeryüzünde farklı toprakların oluşması; ana materyal üzerinde yaşanılan organizmaların aktivitesi, topografiya veya bölgesel rol yeyen, toprak oluşumu için gerekli zaman ve iklimin birlikte etkilerinden dolayı rastgele değildir. Bu farklılık temel toprak etüdleri ile toprakları karakteristiklerine göre sınıflara ayırarak sınıflanan her bir farklı grubun çeşitli amaçlarla yorumlanmasına imkan sağlar.

Belirli bir yörede bulunan toprak çeşidinin kendine özgü kullanım biçimi ve isteği vardır. Çünkü toprak karakteristikleri ve kalitesi onun davranışlarını etkilemektedir. Toprak karakteristikleri ise kil tipi, mineral tane büyüklüğü, strüktür, su tutma kapasitesi ve reaksiyon gibi ölçülebilen ve gözlenebilen öğelerdir. Böyle karakteristiklerin saplanması sonucu oluşturulacak toprak haritaları ve bunların yorumları toprakların yeteneklerine göre verimli bir şekilde kullanımlarını sağlayan temel kaynaklardır (3).

Tarım alanlarındaki gelişmeleri topraktan soytulamak günümüz teknolojisinde bile olanaksız olup, topraklar tarımsal üretimin kaynağı olma özelliklerini hala korumaktadırlar. Bu nedenle toprakları karakteristiklerine göre uygun şekilde kullanmanın ve bunlardan en yüksek verimin alınmasında izlenecek tek yol, bu materyallerin özelliklerinin çok iyi bilinmesi ve tanınmasıdır (4).

Bu çalışma Tokat Meyvecilik Üretme İstasyonu topraklarının detaylı etüdü ve haritalaması ile buna bağlı olarak arazi kullanım kâbiliyet sınıflamasını kapsamaktadır. Toprak etüd ve haritalama çalışmalarıyla Meyvecilik Üretme İstasyonu arazisindeki farklı toprak gruplarının saptanması, bunların özellikleri ve gerekşimlerinin açığa kavuşтурulması amaçlanmıştır. Ayrıca Yeşilirmak tarafından birikme ile oluşan Kazovada, ileride yapılabilecek detaylı etüd çalışmalarında ovadaki toprak oluşumuna paralellik arz eden Meyvecilik Üretme İstasyonu topraklarının etüd ve haritalanması çalışması bir model olarak düşünülmüştür. Bu çalışma sonunda elde edilen değerler, değişik amaçlar için yorumlandığında; alanın toprak potansiyeli ile bunların gerekşimlerinin yanında, kullanım planlaması ve bununla ilgili her türlü bilgi de elde edilebilir.
2. MATERİYAL ve METOD

2.1. Materyal:

1/3000 ölçekli Meyvecilik Üretme İstasyonunun parselasyonunu gösteren bir kullanım haritası ve 1/25000 ölçekli topografik haritalar büro ve araçi çalışmalarında kullanılmıştır.

2.1.1. Meyvecilik Üretme İstasyonu Alanının Tanıtımı:

2.1.2. İklim:

Tokat ili yarı kurak karakterli geçit bölgesinde etkin olduğu bir iklim sahibi olup yazlar sıcak ve kurak, kışlar soğuk ve yağışlı geçmektedir. 26 yıllık gözlemelere göre yıllık yağış ortalaması 412.5 mm'dir. Yıllık yağışın %23.6'sı kış, %27.9'u ilkbahar, %25.3'u yaz ve % 23.2'si sonbaharda düşmektedir. Yıllık ortalama sıcaklık 12.0 °C, en soğuk ay 1.2 °C ile sıcak en sıcak ay 22 °C ile temmuz ayıdır (5).

Çalışma alanının içinde bulunduğu Tokat bölgesinde toprak nem rejiminin ustic, toprak sıcaklık rejiminin ise thermic olduğu bildirilmiştir (6).

2.1.3. Jeoloji:

Tokat bölgesi jeolojisini filizler (şeyl, marn), kristalın kütleler, üçüncü zaman öncesi tortullar ve lokal sahalarda rastlanan aluvyonlar oluşturmaktadır.

Çalışma alanı bu yapılardan Yeşilirmak nehrinin etkisiyle depolanmış genç oluşukları ve özellikle koluvial arazilerde metamorfik kütlelerden mika şiisti kapsar.

2.1.4. Fizyoğrafya:

Meyvecilik Üretme İstasyonu arazisinde, Topçam dağının güney yanamacından yer çekimi etkisiyle aşağıda birikerek oluşan yamaç arazi (koluvial arazi) ve bunun taban araziyle kesistiği bölge, Yeşilirmak'ın taşıdığı aluvyonlarla oluşmuş taban arazi olmak üzere iki farklı fizyoğrafik unite bulunmaktadır.
2.2. Metod

Detaylı toprak etüt ve haritalama amacıyla yapılan bu çalışma üç aşamadan oluşmuştur. Birinci aşamada çalışma alanında yer alan fizyografik üniteleri tespit etmek amacıyla 1:25000 ölçekli topografik harita yorumlamasından sonra fizyografik ünitelerde yer alan, olması toprak serisi ve fazları esas alınarak ön arazi çalışmalarında profil çukurlarının yerleri tespit edilmiştir.

İkinci aşamada ön arazi çalışmalarında belirlenen farklı fizyografik ünitelerde profil çukurları açılarak seri düzeyinde tanımlanma yapılmış ve isimlendirilmiştir. Tanımlanan ve isimlendirilen toprak serilerinin var olan ve olması fazlarını da içeren “arazi haritalama lejanti” bu aşamada hazırlanmıştır. Profil tanımlamaları yapılmışken, tanımlanan her seriden genetik horizont esasına göre, toplam 36 adet bozulmuş örnek alınmıştır. Daha sonra alınan bozulmuş toprak örneklerinde gerekli fiziksel ve kimyasal analizler laboratuarda yapılmıştır. 1/3000 ölçekli Meyvecilik Üretme İstasyonuna ait parselasyonu gösteren kullanım haritası üzerinde 100 metre aralıklarla grid noktaları belirlenerek ortalama 120 cm derinliğe kadar kontrol edilmiş ve toprak sınırları kesinleştirilerek, her farklı toprağı seri ve faz özellikleri ile simgeleyen semboller harita üzerine işlenmiştir.

Son aşamada ise farklı toprak serilerine ait bozulmuş toprak örneklerinin analiz sonuçları yorumlanarak, arazi gözlemleri ile belirlenen toprak özellikleri ve sınırları tekrar gözden geçirilerek, gerekli faz düzeltmeleri yapılmış ve “temel toprak haritası oluşturulmuştur.

Detaylı olarak yürütülen toprak etüt ve haritalama çalışmalarında haritalama ünitesi olarak toprak serileri ve bunların önemli fazları kullanılmıştır. Toprakların fazlara ayrılmasında gözetilen derinlik, eğim, taşılık ve yüzey toprağın tekstürü gibi özellikleri için aranan kriterler Soil Survey Division Staff (1)’den alınmıştır. Çizilen sınırlar arazi gözlemleri ve yapılan laboratuvar analizleri ile doğrulanarak gerçek toprak sınırları ve diğer yardımcı bilgiler sonucu hazırlanın temel toprak haritası üzerine aktarılmıştır.
Meyvecilik Ürün ve İşletme İstasyonu arazisindeki farklı toprak serilerinin morfolojik özelliklerinin saptanması amacıyla her toprak serisini en iyi şekilde karakterize edebilecek örnek toprak profiller Soil Survey Staff (7)'a göre tanımlanmıştır.

Toprakların fizyikal ve kimyasal analizleri yapıldıktan sonra, söz konusu analiz sonuçları ile beraber, bilinen morfolojik özellikler dikkate alınarak; Dünya Toprak Haritası Lejantı (2) ve Toprak Taksonomisi (1) ilkelerine göre alt grup düzeyine kadar indirildi ve sınıflandırılmıştır.

Arazide toprakların morfolojik özelliklerinin saptanması amacıyla, renk belirlenmesinde Munsell Renk Iskalası, CaCO₃ kontrolünde ise % 10’luk HCl asit kullanılmıştır (8).

Çalışma alanında tanımlanan toprak serilerinden horizont esasına göre alınan topraklar kurutularak 2 mm’lik elekten geçirilmiş ve her bir örnekte aşağıdaki analizler yapılmıştır. % tuz, örneklerin doygunluk çamurları hazırlanarak, çamurda elektriksel iletkenliğe (EC) bağlı olarak kondaktivimetre metodu ile (9); pH, doygunluk çamurunda, hidrojen iyonu konsantrasyonu pH-metre ile potansiyometrik olarak ölçülmüştür (10); kireç, Scheibler kalsimetresi metodu ile belirlenmiştir (10); organik madde, Walkley-Black (10) metodu ile belirlenmiştir; katyon değişim kapasitesi, sodyum asetat yöntemi ile belirlenmiştir (8), Değişebilir katyonlar (DK) için de amonyum asetat yöntemi uygulanmıştır (8); dane iriliğin dağılımı, 2 mm’lik elekten geçirilmiş, bozulmuş toprak örneklerinde Bouyoucous (11) hidrometre metodu ile belirlenmiştir.

3. ARAŞTIRMA BULGULARI

3.1. Tokat Meyvecilik Ürün ve İşletme İstasyonu Müdürlüğü Topraklarının Morfolojik Özellikleri, Fizyikal ve Kimyasal Analiz Sonuçları

Toprakların morfolojik özellikleri, her bir seriyi tanımlamak için açılmış olan profillerin açıklaması ve tanımlamalarını kapsamaktadır. Bu bölümde Meyvecilik Ürün ve İşletme İstasyonu arazisinde belirlenen her farklı toprak serisi, bulunduğu fizyografik ünitenin başlığı altında açıklanıp tanımlanmış, bazı önemli fizyikal ve kimyasal analizler verilerek bu serilere ait önemli fazlar EK-1’de topluca gösterilmiştir.
3.1.1. Genç Nehir Terası Fizyografik Ünitesi

Deneme Serisi (Dn)

Genç nehir terası üzerinde gelişmiş olan Deneme serisine ait topraklar Ap, A1, C1, C2 horizonlarına sahiptir. Bu seride yüzey toprak rengi genellikle koyudur (Kuru iken donuk sarımsı portakal, yaş iken koyu kahverengi). Özellikle yüzeyden 20-30 cm derinlikte toprak oldukça yumuşaktır. Profil boyunca kireç miktarında herhangi bir değişiklik gözlenmemiştir ortalama %6-7 arasında değişmektedir.

Deneme serisini tanımlamak için örnek profili Yeşilirmaktan 120 metre kuzeyde ve Orman Fidanlık Müdürlüğü sınırlarından 540m. doğuda % 0-2 eğimli tahıl tarımı yapılan bir alanda açılmıştır.

PROFİL TANIMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımı</th>
</tr>
</thead>
</table>
| Ap | 0 -20 cm | Donuk sarımsı portakal rengi (10 YR 6/3) kuru, donuk sarımsık kahverengi (10 YR 3/3) nemli; tn; orta orta granüler; kuru iken yumuşak, nemli iken gevşek, yaş iken yapışkan plastik; orta kireçli; yağın saçak kök, geçişli dalgalı sarà.
| A1 | 20 -43 cm | Koyu kahverengi (10 YR 3/3) yaş; tn; masif; kuru iken hafif sert, nemli iken gevşek, yaş iken yapışkan plastik; orta kireçli; yağın saçak kök; keskin düz sarà.
| C1 | 43 -57 cm | Kahverengi (10YR4/4) yaş; siltli tn; masif; kuru iken hafif sert, nemli iken gevşek, yaş iken yapışkan plastik; orta kireçli , seyrek saçak kök; geçişli dalgalı sarà.
| C2 | 57 + | Kahverengi (2.5Y3/3) yaş; tn; masif; kuru iken yumuşak, nemli iken gevşek, yaş iken yapışkan plastik orta kireçli; geçişli dalgalı sarà. |
Bahçe Serisi (Bh)

Bahçe serisini belirlemek amacıyla örnek toprak profili, yemekhane binasından 90 metre güneyde, şeftali bahçesinde % 0-2 eğimli bir alanda açılmıştır.

PROFİL TANIMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0-26 cm</td>
<td>Grimsı sarı (2.5 Y 7/3) kuru, sarımsı kahverengi (2.5 Y 5/3) yaş; tun; zayıf orta granüler; kuru iken yumuşak, nemli iken gevşek, yaş iken yapışkan plastik; orta kireçli, yaygın saçak kök; geçişli sınır.</td>
</tr>
<tr>
<td>Ad</td>
<td>26-60 cm</td>
<td>Donuk sarımsı kahverengi (10 YR 4/3) yaş, tun, masif; kuru iken hasıf sert, nemli iken gevşek, yaş iken yapışkan plastik; orta kireçli; orta yaygın saçak kök; seyrek taşılılık; düz sınır.</td>
</tr>
<tr>
<td>C</td>
<td>60+</td>
<td>Zeytuni kahverengi (2.5 Y 4/3) yaş; kumlu tun, masif; kuru iken dağıtılmam, nemli iken çok gevşek, yaş iken az yapışkan, plastik değil; az kireçli</td>
</tr>
</tbody>
</table>

Merkez Serisi (Mr)

Merkez serisine ait örnek toprak profili tanımlama amacıyla lojmanlardan 120 metre batıda % 0-2 eğimli alanda açılmıştır.

PROFİL TANIMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımlama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0 -22cm</td>
<td>Donuk san portakal rengi (10 YR 6/3) kuru; donuk sarımsı kahverengi (10 YR 4/3) yaş;killi; orta orta granüller; kuru iken çok sert, nemli iken çok sıvı, yaş iken çok yapışkan çok plastik; az kireçli; yağın saçak kök; geçişli sınırlar.</td>
</tr>
<tr>
<td>A₁</td>
<td>22- 95cm</td>
<td>Donuk sarımsı kahverengi (10 YR 4/3) yaş;killi; masif; kuru iken çok sert, nemli iken çok sıvı, yaş iken çok yapışkan çok plastik; az kireçli; seyredek saat kök, geçişli sınırlar.</td>
</tr>
<tr>
<td>C₁</td>
<td>95 -138cm</td>
<td>Donuk sarımsı kahverengi (10 YR 4/3) nemli; siltli to, masif; kuru iken sert, nemli iken sıvı, yaş iken yapışkan plastik; orta kireçli; hafif taşlı, geçişli sınırlar.</td>
</tr>
<tr>
<td>C₂</td>
<td>138 + cm</td>
<td>Kahverengimsi siyah (10 YR 3/2) yaş; kum; teksel; kuru iken dağılım, nemli iken çok gevşek, yaş iken az yapışkan plastik değil; hafif çakılı</td>
</tr>
</tbody>
</table>

3.1.2. Yamaç Arazı ve Taban Araziye Geçiş Fizyografik Ünitesi

Çalışma alanının kuzey kesimini kaplayan bu ünitede Fidanlık, Yol ve Sera serileri ayrı edilerek tanımlanmıştır. Eğimleri yüzde 2-6, tesviye yapılmış arazilerde ise %0-2 eğimli olan bu ünitede topraklar metamorфик orijinli kayalardan oluşmuştur.

Yol Serisi (Y)

Koluviyal etek arazi ve taban araziye geçiş bölgesinde gelişmiş olan bu topraklar A-C horizontu derin topraklardır. Pullukla sürülen Ap horizonunun altında ortalama %43-44 kil içeren horizontlar bulunmaktadır. 90 cm'den sonra tekstür aniden kabalaşmakta ve kum içeriği % 60'a ulaşmaktadır. Bu derinlikten sonra profilin tekstürü kumlu tina dönüştüktedir.

Tüm profilin kireç içeriği homojen olup ortalama % 5-6 civarındadır. 75 cm'den sonra seyre kireç cepleri görülmektedir. Organik madde yüzeyde %2.43 iken derinlerde %1.33'e kadar düşmüştür. pH 7.93-8.09 arasında değişmektedir. Baskın olan katyonlar
Ca ve Mg dur. Renk her horizonta değişmekle beraber baskılan donuk sarımsı kahverengidir. 90 cm’den sonra keskin kenarlı küçük taşlar vardır.

Yol serisini tanımlamak için açılan örnek toprak profili tavukçuluk binasından 480 metre batıda % 0-2 eğimli buğday tarımı yapılan bir alanda bulunmaktadır.

PROFİL TANıMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0 - 16 cm</td>
<td>Donuk sarımsı portakal kahverengi (10YR7/3) kuru, donuk sarımsı kahverengi (10 YR 4/3) yaş;killi ton; orta orta granüller; kuru iken sert, nemli iken sıklı, yaş iken çok yapışkan plastik; az kireçli; hafif taşlı; yaygın sıcak kök; dalgınlı.</td>
</tr>
<tr>
<td>Ad</td>
<td>16 - 52 cm</td>
<td>Koyu kahverengi (10 YR 7/3) yaş; kil; Çok kaba köşeli blok; kuru iken çok sert, nemli iken çok sıklı, yaş iken çok yapışkan çok plastik; az kireçli; seyređi taşlı; orta yaygın sıcak kök; renk açılıması; geçişi dalgınlı.</td>
</tr>
<tr>
<td>C1</td>
<td>52 - 75 cm</td>
<td>Donuk sarımsı kahverengi (10 YR 5/4) yaş; kil; masif; kuru iken çok sert, nemli iken sıklı, yaş iken çok yapışkan çok plastik, az kireçli; orta yaygın sıcak kök; renk açılıması; geçişi dalgınlı.</td>
</tr>
<tr>
<td>C2</td>
<td>75 - 92 cm</td>
<td>Donuk sarımsı portakal rengi (10 YR 6/4) yaş;killi ton; masif; kuru iken sert, nemli iken sıklı, yaş iken yapışkan plastik; seyređi kireç cepleri; geçişli dalgınlı.</td>
</tr>
<tr>
<td>C3</td>
<td>92 +</td>
<td>Donuk sarı portakal (10 YR 4/4) yaş; kumlu ton; masif; kuru iken dağılığan, nemli iken gevşek, yaş iken az yapışkan plastik değil; orta kireçli; yoğun keskin kenarlı küçük taşlar; düz sınırlı.</td>
</tr>
</tbody>
</table>

Fidanlık Serisi (Fd)

Koluviyal etek arazi üzerinde oluşan fidanlık serisi toprakları Ap horizontunun altında A₁, C₁ ve C₂ horizontlarına sahiptir. Yüzeyde toprak tekstüri ince iken alt horizontlara doğru kabalaşmakta, kil miktarı % 32’den % 10 civarına azalmakta, kum miktarı ise % 41’den % 67’ye artmaktadır. Ap ve A₁ de yaygın C horizontunda çok yaygın keskin kenarlı küçük taşlar, 90 cm’den sonra taş ve kum karışıımı vardır. Profil boyunca renk yüzeyde donuk kahverengi ve kahverengi iken alt horizontlarda zeytuni ve

335
sarımsı kahveye dönmuştur. Kireç durumu C₁ horizonunda biraz artmasına karşılık genelde % 4-5 arasında değişmektedir.

Fidanlık serisini tanımlamak için örnek toprak profili atolye binasından 75 metre batıda şefali bahçesi içinde % 2-6 eğimli bir alanda açılmıştır.

PROFİL TANIMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0 - 15 cm</td>
<td>Donuk kahverengi (7.5 YR 6/3) kuru, donuk kahverengi (7.5 YR 5/4) yaş;killi tin; zayıf orta granüller; kuru iken sert, nemli iken sıkı, yaş iken yapışkan plastik; orta kireçli; yağın saçak kök; yağın küçük taşlı; geçişli dalgınlı sınırlar.</td>
</tr>
<tr>
<td>A₁</td>
<td>15 - 50 cm</td>
<td>Kahverengi (7.5 YR 4/3) yaş; killi tin, masif; kuru iken sert, nemli iken sıkı, yaş iken yapışkan plastik; orta kireçli; çok yaygın küçük taşlar; düz keskin sınırlar.</td>
</tr>
<tr>
<td>C₁</td>
<td>50 - 70 cm</td>
<td>Zeytini kahverengi (2.5 Y 4/3) yaş; kumlu tin; masif; kuru iken dağılmış, nemli iken çok gevşek, yaş iken az yapışkan plastik değil; orta kireçli; çok yaygın küçük taşlar; düz keskin sınırlar.</td>
</tr>
<tr>
<td>C₂</td>
<td>70 +</td>
<td>Sarımsı kahverengi (2.5 Y 5/4) yaş; kumlu tin; masif; kuru iken dağılmış, nemli iken çok gevşek, yaş iken az yapışkan plastik değil; orta kireçli</td>
</tr>
</tbody>
</table>

Sera Serisi (S)

Bu seride ait topraklar, koluviyal etek arazi üzerinde gelişmiş A-C horizonlu genç topraklardır. Bu serinin en önemli özelliği topraklarının renginin kırmızımsı kahverengi (5YR 6/4 kuru, 5YR 4/4 yaş) olmasıdır. Tekstürleri yüzeyde killi tin iken C₂ horizonunda tımdır. Yüzeyde organik madde % 3.02 iken alt horizontlarda % 0.89'a düşmüştür.

Sera serisini tanımlamak için açılan örnek toprak profil çukuru, işletme binasının 25 metre güneyinde armut bahçesinde % 2-6 eğimli bir alandadır.
PROFİL TANIMLAMASI

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Derinlik (cm)</th>
<th>Tanımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0-18 cm</td>
<td>Donuk portakal rengi (5 YR 6/4) kuru, donuk kırmızımsı kahverengi (5 YR 4/4) yaş;killi tu; zayıf orta granüler; kuru iken sert, nemli iken sıkı, yaş iken yapışkan plastik; orta kireçli; geçişli sınır</td>
</tr>
<tr>
<td>A₁</td>
<td>18-52 cm</td>
<td>Kırmızımsı kahverengi (5 YR 4/6) yaş;killi tu; zayıf orta yarı köşeli blok; kuru iken sert, nemli iken sıkı, yaş iken yapışkan plastik; orta kireç; geçişli sınır</td>
</tr>
<tr>
<td>C₁</td>
<td>52-75 cm</td>
<td>Kırmızımsı kahverengi (5 YR 4/4) yaş; kil; masif; kuru iken çok sert, nemli iken çok sıkı, yaş iken çok yapışkan çok plastik; az kireçli; düz sınır</td>
</tr>
<tr>
<td>C₂</td>
<td>75 + cm</td>
<td>Zeytuni kahverengi (2.5 Y 4/3) yaş; tu; masif; kuru iken hassıf sert, nemli iken geveşek, yaş iken yapışkan plastik; az kireçli</td>
</tr>
</tbody>
</table>

Özel Araqı Tipi (Nehir Sırtı) NS

3.2. Meyvecilik Üretme İstasyonu Topraklarının Sınıflandırılması

Çalışma alanında saptanan altı farklı toprak serisi profil tanımlamaları, horizont ayrımları, fiziksel ve kimyasal analizleri yapıldıktan sonra Toprak Taksonomisinde belirlenmiş olan genetik tanımlama horizontlarına sahip olmadıklarından dolayı Entisol ordosu içerisinde sınıflandırılmıştır. Yeşilrmak tarafından depolanan genç aluvial materyaller üzerinde gelişiklerinden, fazla bir profil gelişimi göstermeyen Merkez, Deneme ve Bahçe serileri Entisol ordosunun Fluvent altorosuna yerleştirilmiştir. Üretme İstasyonunun içinde bulunduğu bölgenin toprak nem rejimi Ustic olduğuundan, büyük grup düzeyinde yapılan sınıflamada Ustifluvent olarak ayırt edilmişlerdir. Bu topraklardan Merkez ve Bahçe serileri belirtilen alt grupların hiçbirine uymadıkları içinde Typic Ustifluvent olarak, Mollic epipedonun tanımlamalarına benzer özelliklere
sahip olduğundan dolayı Deneme serisi ise Mollic Ustifluvent alt grubunda sınıflandırılmıştır.

Koluviyal etek arazileri üzerinde gelişen Fidanlık Yol ve Sera serilerine ait topraklarda profil gelişimi görülmemiş, ochric epipedona sahip olduğu ve Ustic toprak nem rejininde olduğu için Entisol ordosunun Ustorthent Büyük grubunda sınıflandırılmıştır. Profillerinde genetik olarak farklılaşmış tanımlama horizontlarına sahip olmalarından ve belirtilen alt grupların hiçbirine uymadıkları içinde Typic Ustifluvent alt grubunda sınıflandırılmıştır.

Çizelge 1. Meyvecilik Üretme İstasyonu Topraklarının Toprak Taksonomisi (1) ve FAO/UNESCO (2) Sistemine Göre Sınıflandırılması

<table>
<thead>
<tr>
<th>ORDO</th>
<th>TOPRAK TAKSONOMISI</th>
<th>Toprak serileri</th>
<th>FAO/UNESCO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altordo</td>
<td>Büyük Grup</td>
<td>Alt Grup</td>
</tr>
<tr>
<td></td>
<td>FLUVENT</td>
<td>Ustifluvent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORTHENT</td>
<td>Ustorthent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. SONUÇ, TARTIŞMA VE YORUMLAR

4.1 Tokat Meyvecilik Üretme İstasyonu Topraklarının Oluşumu

Toprak oluşu, doğada var olan diğer varlıkların oluşundan daha uzun süreç içerisinde ve daha karmaşık faktör ya da işlemlerin karşılıklı etkileri sonucu meydana gelmektedir. İklim ve canlıların belirli topoğrafik koşularda ve zaman periyodu içerisinde
ana materyal üzerindeki etkileri ile toprak oluş ortamında bir seri fiziksel, kimyasal ve biyolojik işlemler süreğitmesi ve sözü geçen faktör ya da işlemlerdeki en küçük farklılıkların bileşimi, toprak karakteristiklerinin ortaya çıkmasıyla sonuçlanmaktadır.

4.2. Meyvecilik Üretme İstasyonu Topraklarının Başlıca Sorunları

Meyvecilik Üretme İstasyonu Topraklarının büyük çoğunluğu aluvial kökenli olup detaylı haritalamadan elde edilen verilerin yorumlanması ile elde edilen arazi yetenek sınıflamasında birinci sınıf ve ikinci sınıf arazilerden oluştuğu tesbit edilmiştir. Yapılan analizlerde en fazla % tuz miktarının Sera serisinin yüzeyinde 0.11 (tuzuz) olması arazide drenaj veya sulama kanalının bir problemin olmadığını göstermektedir. Kireç miktarının ise %3.5-10 arasında olması kireç miktarının çalışma alanında bitki besinleri elverişiliğini engelleyicisi bir sorun yaratmadığını göstermektedir. Her serinin tanımlanan horizontlarında yapılan pH analizlerinde en düşük 7.54'tür. Fakat pH'yi düzenlemek için bilinçli ve dengeli gübreleme yapılabilir, bunun dışında yapılacak herhangi bir müdahale ekonomik olmayacaktır. Üretme İstasyonu topraklarının tekstürü nehe yaklaştırılmış kabalaşmakta ve çakıl katmanı yüzeye çıkmaktadır. Kaba tekstürlü bölgelerde sık sık sulamada yapılmış ve kullanılmaktadır.

4.3. Meyvecilik Üretme İstasyonu Topraklarının Arazi Yetenek Sınıflaması ve Sulu Tarıma Uygunluk Sınıflaması

Çalışma alanında yer alan haritalama birimlerinin toprak serisi ve üst toprak tekstürü, eğim, derinlik ve taşlılık gibi fazlara dikkate alınarak Klingebiel ve Montgomery (13)'e göre arazi yetenek sınıf ve alt sınıflarına ayrılmıştır. Aynı fazlular göz önünde tutularak USBR(14)'e göre sulu tarıma uygunluk sınıfları ve alt sınıfları belirlenmiştir. Sonuçlar Ek-2 ve Ek-3'de verilmiştir.

KAYNAKLAR

5. KÖY HİZMETLERİ, 1993. 1993 Su Yılı Hidrometeoroljik İklim Verileri, Köy Hizmetleri toka Araştırma Enstitüsü Yayınları, TOKAT.

